RADIATION OF AN INFINITE ISOTHERMAL CYLINDER
WITH ACCOUNT OF SCATTERING

F. N. Lisin and I. F. Guletskaya UDC 536.3

The radiation problem of a cylinder filled by a radiating, absorbing, and scattering medium is
treated. The transport equation is solved analytically within the P; approximation for an arbi-
trary scattering indicatrix by the spherical harmonic method.

The transport equation of radiant energy is written for gray emission in the form [1]
syd+kJ = (P/4n) g P(s; s')J (r; s)do'-+j.
in
Case and Zweifel [1] obtained equations in the P; approximation by the spherical harmonic method,
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where p = ZL S‘ (s; s) P(s; s')dw’ is the average scattering cosine.
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The quantity ¢, is proportional to the bulk density of radiant energy, and ¢ ; is proportional to the radia~-
tion flux density. For isotropic internal source functions and a constant density of the attenuated material the

equation for 3, is
V2o — 32 (1 — ) (1 — 1) o = — k(1 — v4) Jo,
where
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For a cylinder with axial symmetry, Eq. (4) becomes
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Introducing the optical width = S kdr, we rewrite (5) in the form
0
dd, 1 d§ # l—y
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where %y =3k3(1 -y} (1-v ).

The cylinder walls are assumed to be cold and black. The Marshak boundary conditions are then
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Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 1, pp. 141-144, July, 1978. Original
article submitted June 23, 1977.
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Fig. 1. Emissivities of an isothermal cylinder Fig. 2. Effect of average scattering cosine f1 on
for p=0.5 and various y: 1) v=0.2; 2) 0.4; 3) emissivity.
0.6; 4) 0.8.
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Fig. 3. Effect of v on emissivity for various p and
Tp=4: 1) £=0.2; 2} 0.4; 3) 0.8.
TABLE 1. Emissivity of an In-
finite Cylinder
e
i | by Nusselt  |by Eq. (12)
0,1 0,1767 0,179
0,2 0,3170 0,328
0,4 0,5200 0,546
1,0 0,8142 0,854
The following symmetry conditions are assigned on the eylinder axis:
4% _ o P=0 at t=0. 8)
dt
Equation (6) is the modified Bessel equation. Its general solution is
- . k
Yo (1) fo - = Aly () + 8Ky (24). (9)
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where I is the zero-order Bessel function of a pure imaginary argument, and K, is the zero-order Bessel
function of the first kind of a pure imaginary argument,

Since i, cannot be infinite at 7 =0, the coefficient B in (9) must be set equal to zero.

Determining A from the Marshak boundary conditions (7), we obtain
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while the quantity ¢ ; at the boundary r =7, acquires the value
4
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The emissivity is determined by the expression
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The form of the scattering indicatrix is determined by the quantity . For a spherical scattering indica-
trix P(l; I')=1, scattering is isotropic and  =0. Cylinder emissivities were calculated by Eq. (12) for various
Ty, ¥, and fi.

The results of these calculations are given in Figs. 1-3.
As 7y~ =, the solution (12) transforms to the solution [2] for a semiinfinite layer:

_ 4V T—y _ )
YVT—y+V3V 1

Emissivities were calculated by Eq. (12) for B =0. Table 1 provides the results of the calculation and a
comparison with Nusselt's data as chosen from [3].

The larger the optical width of the medium and the closer to unity the ratio of the scattering coefficient
to the attenuation coefficient, the more accurate the P; approximation is.

NOTATION

J, radiation intensity; r, radius; k, attenuation coefficient; 8, scattering coefficient; o, absorption coef-
ficient; Pfs; s'), scattering indicatrix; T, temperature; €, emissivity; y, scattering-to-attenuation-factor ratio.
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